
EC3410.FallFY03/MPF9/23/02
1

Optimal FilteringOptimal Filtering
Problem:

•  How to estimate one signal from another.

•  In many applications desired signal is not
   observable directly (convolved with another,
   distorted by noise).

ex: (1)  Information signal transmitted over
      channel gets corrupted with noise.

(2)  Image recorded by system is subject to
      distortions.

(3) Directional antenna array is vulnerable
      to string jammers in other directions
      due to sidelobe leakage, etc.

In this course:

Emphasis on least square techniques to
estimate/recover signal (i.e., case         ).

not the only way to solve problems
(         could be used).

Look at:

�  Orthogonality Principle.
�  Wiener filtering (FIR, IIR).

� 2

� p
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Estimation of Signals

x optimal processor                  best estimate
   of y (where y
   is related to x)

Possible procedure:  Mean square estimation

minimize:

�y �

may not be linear in x

conditional mean

Proof:

L y, y x� a fb gDefine :  loss function
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� � � �ˆ |y x E y x� �

�y xa f

�y a xH
�

•  Generally          is a non-linear function of x

[exception when x and y are jointly normal
Gauss-Markov theorem]

•  Complicated to solve, sometimes no closed-form
    solution.

•  Restriction to Linear Mean Square Estimator
    (LMS)

estimator of y is forced to be a linear
function of measurements x:

will produce the Wiener-Hopf equations

•  Derivation of W-H eqs. (greatly!) simplified by
    use of orthognality principle.

Note:  LMS error is never smaller than MS error
(why?)
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�
�

2 2
� �E y y x� a fo t

Use LMS Criterion:  estimate y by
     where weights {ai} minimize
     MS error:

�y a xH
�

� �
� min
2

� E y *m r

Th:  Let error

a minimizes the MSE       if a is chosen
such that

� � �y y�

E x E x Ni i i� �
* * , , ,m r m r� � � �0 1 �

�
�

2

(i.e., error � is orthogonal to observations                 ).

Corollary:  minimum MSE obtained:

Orthogonality PrincipleOrthogonality Principle

xi i

Nl q
�1
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Proof:

where     is the weight vector defined
so that the orthogonality principle holds.
Resulting error is called

� � � � � � �y a x y a a a xH H
� �a f

�a

� �� � �y a xH
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Optimal Filtering - Wiener FilteringOptimal Filtering - Wiener Filtering

Problem:  estimate signal          from observations
  x(n) [noisy version of d(n)]

Different Wiener filtering problems:

•  smoothing

•  filtering

•  prediction

    difference between above Wiener problems comes
    from which of the available observations are taken
    into account to compute the filter coefficients.

�d na f
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signal s(n) filter

noise
w(n)

+
x(n)

d(n)

                            Form of                        Desired
Problem             Observations                Signal

Filtering of          x[n] = s[n]+�[n]            d[n] = s[n]
signal in noise

Prediction of        x[n] = s[n]+�[n]            d[n] = s[n+p];
signal in noise   p > 0

Smoothing of       x[n] = s[n]+�[n]            d[n] = s[n�q];
signal in noise   q > 0

Linear                   x[n] = s[n�1]                 d[n] = s[n]
prediction

General                 x[n] = G(s[n], �[n])      d[n] = s[n]
nonlinear
problem

Typical Wiener Filtering Problems

d(n)

d(n)

d(n)

d(n)

n0

n0

n0

n0

n

n

n

n

x
���

n+1

n+p

n�q
q

p

1

Wiener Filtering

FIR Case
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�d na f

We want to design a filter (in the generic sense can
be: filter, smoother, predictor) so that:

� *d n h k x n k
k

P

a f a f a f� �

�

�

�
0

1

How d(n) is defined specifies the operation done:

�  filtering:

�  predicting:

�  smoothing:

Wiener filter can be derived for non-stationary
processes:

 s(n)
signal

filter

noise
w(n)

+
x(n)

d(n)

�d na f
+

e(n)

d(n)

(1)  Wiener FIR case

•  Filter criterion used:  minimization of mean square
    error between d(n) and         .

•  What are we doing here?
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How to find h(k)?

Minimize the MSE: E d n d n

h k x n k h x

h h h P

x x n x n P

k

P
H

T

T

a f a f{ }

a f a f
a f a f
a f a f

�

� �

� �

� � �

�

�

�

�

,

,

*

2

0

1

0 1

1

Wiener filter is a linear filter � orthogonality
principle applies

� � � � �

� � �
L
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O
QP
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�

�
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Minimum MSE(MMSE)

obtained when                is the optimum weight
vector

opth h�
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Matrix formulation of Wiener equations:

•  Recall:

    where    �

    �

    �

•  Orthogonality principle:

�d na f �

E n x E x n

i P
i i� �a f a f* *

,

� �

� � �

0

0 1

where {xi} represent the set of observations
used to compute the filter output.

In this case {xi}=
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Minimum MSE obtained for optimum weights:

Recall orthogonality principle says:

� �
� min
2

�

�

E d n na f a f*
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Summary:  Wiener Filter Equations

 s(n)
signal

filter

noise
w(n)

+
x(n)

d(n)

�d na f
+

e(n)

desired signal

error signal

�

+

•  Wiener filter is a filter such that:

� *d n h k x n k
k

P

a f a f a f� �

�

�

�
0

1

� e E d n d n2 2
� �
L
NM

O
QPa f a f�such that: minimum
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•  How d(n) is defined specifies the specific type of
    Wiener filter designed:

filtering:

smoothing:

predicting:

•  ��w-H eqs.:    hopt =

        MMSE: � e min
2

�
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•  The FIR implementation permits use of a tapped-
    delay-line (TDL) filter with a finite number of
    coefficients.

� *d n h x n
P

a f a f a f� �

�

�

�
�

� �

0

1

 x(n)

+

�d na f

+
+

h*(0) h*(1) h*(2) h*(P�1)

delay D D D
 x(n�1)  x(n�2)  x(n�P�1)

+
+++
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Application to Wiener filter  (d(n) = s(n))

example 1:    assume x(n) is defined by

s(n)
filter

w(n)

+
x(n) �d na f

+

d(n)

�

+ e(n)

s(n), w(n) uncorrelated

w(n) white noise, zero mean      Rw(n) - 2�(n)

s(n)                                             Rs(n) = 2 (0.8)|n|
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example 2:  s(n), w(n) uncorrelated

          w(n) noise with      Rw(n) = 2 (0.5)|n|

          s(n)  signal with    Rs(n) = 2 (0.8)|n|
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Application of Wiener filter to one-step linear
prediction

•  tracking of moving series

•  forecasting of system behavior

•  data compression

•  telephone transmission

•  W-H eqs.

� � � � � �

� �

*1
opt

1
*

0

ˆwhere
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•  Geometric interpretation:  Assume

P = 1 (filter of length 2)
n = 1

x(0)

x(2)

x(1)

�(2)

�d 1
2
a f
a f

�

��

�(2) is the error between true value x(2) and
predicted value for x(2) based on x(1) and x(0)

   represents the new information in
   x(2) which is not contained in x(0)
   and x(1)

   �(n) is called the innovation process
   corresponding to x(n)

�d 1a f
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ex:    x(n) = a x(n�1) +n(n)    |a| < 1

n(n) is white noise
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AR (1) process
predictor

ap = 0.5

seed = 1024

a �

�L
NM
O
QP

0 5
0
.� � � � � � �1 21 2x n a x n a x n� � � � �
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Prediction Error Filter (PEF) Definition

s(n) prediction
filter

w(n)

+
x(n) �d na f

+

d(n) =

�

+ e(n)

P(�)

prediction error filter

•  Prediction error filter transfer function

Recall:

-
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Example 1:

    s(n) = process with

    w(n) = white noise, zero mean

    s(n), w(n) uncorrelated

Design the 2-step ahead predictor of length 3.
Compute MMSE.

R ns
na f a f� 2 0 8.

R n nw a f a f� 2�
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Example 2:

    s(n) = process with

    w(n) = white noise, zero mean

    s(n), w(n) uncorrelated

•  Design the 1-step ahead predictor by length

•  Design 1-step back smoother of length

R ns
na f a f� 2 0 8.

R nw
na f a f� 2 0 5.

2
3
RST

2
3
RST
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Review of Spectral Factorization Concepts
(to be used for Wiener filtering -- IIR implementation)

Pb:  Given the PSD (power spectral density) sn (	),
find a minimum phase function H(j	) so
that

|H(j	)|2 = Sx(	)

Pb has a solution of Sx(	) satisfies: Paley-Wiener
         conditions

Condition not satisfied if Sx(	) has discrete lines.

Pb not easy; restrict to rational spectrum Sx(	).

In S
dx �

�

�

a fb g
1 2
�

��
��

��z
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For discrete systems:

Pb has solution             if it
satisfies Paley-Wiener condition:

Pb not easy: restrict to rational spectrum.

S z H z H zx a f a f c h� . /* *1

In S e d z ex
j j

�

z �� �
�

�
� �

�c h for
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S z A z
B z

k N z
D z

N z
D z

k

x a f a fa f
a f
a f

c h
c h

�

� �0 0

1
1

0
��� � �� ��

* *

* *

/
/

;

Def:  x(n) has a rational spectrum if:

normalizing
constraint

“inside” group
all poles and zeros
inside u.c. |z| < 1
H(z) = Hmin (z)
minimimum phase
component

“outside” group
all poles and zeros
outside u.c. |z| > 1
H* (1/z�) = Hmax (z)
maximum phase
component

Note:  “minimum phase” doesn’t mean Hmin (z)
has minimum phase

 Hmin (z) is actually with maximum
 phase over all filters  with
 same magnitude response.

 Hmin (z) has minimum phase lag =

(see Chapter 5 - textbook).

� H e j�c h
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Note:  Minimum phase system is a causal system
with a minimum phase transfer function.

Brief review of discret process properties

•  Property:  for real RPs x(n) poles and zeros occur
in groups at:

•  Proof:

z z z zo o, , / , /* *
0 01 1

R k R kx xa f a f� � �
*
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Ex:

Find minimim phase and maximum
phase components.

S z z z
z zx a f � � �

� �

�

�

5 2 2
10 3 3

1

1
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Wiener filter  --  IIR implementation

•  IIR sometimes easier to implement

•  Requires solving for a closed form solution for
filter weights

•  Recall FIR implementation gives the following

•  IIR implementation:      Change in notations

•  Again we want to find h so that:

� *d n h k x n k
k

P

a f a f a f� �

�

�

�
0

1

�
�

2 2
� �
L
NM

O
QPE d n d na f a f� is minimum
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Use orthogonality principle

E x n i n E n x n i i� � � � � � �a f a fm r a f a fm r� �
* * , ,0 0 �
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Minimum mean square error

How to compute h?

use “Prewhitening Approach”

•  Pb:  solve

•  Note:  (1)  can’t use Z-transforms  (why?)

(2)  if x(n) = white noise

then (1)

�
�min

2
�

�

�

R i h R i idx x
* * , ,a f a f a f� � � � �

�

�

�
�

� � �

0

0 (1)

�

� �R nx a f
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Solution of IIR Causal Wiener Pb

Idea:  decompose filter into 2 filters so that v(n) is
white

d na fx na fl q

H za f

�H za fv na fwhitening
filter
G za f

���������

Pb now is to find           so that
H(z) is the optimum Wiener filter

� � �H z h na f a f

6-Step Process:

(1)  Use Wiener-Hopf equation on v(n), d(n) to
find h�(n)

h R i R i iv dv
'* * , , ,

�

� � �

�

�

� � � � � � �

0

0a f a f a f

assuming v(n) is white

R n n

h i

v va f a f

a f

�

E
� �

� �
2
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(2)  Compute Rdv (i)

Recall v(n) =

 Rdv (i) =

(3) Compute g(n) or G(z)
      [whitening filter characteristics]

�
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(4)  Compute H��(z)

       Recall

� �
� � �

R
S|
T|

� � �

h i
R i i

H z

dv

v
a f

a f

a f

�
2 0

0

, ,�

otherwise

(5)  Compute Sdv (z)

       from (2) we know R i g k R i kdv
k

dxa f a f a f� �

�

�
*

� �

� � �

S z
H z
dv a f
a f

(6)  Overall filter

       H (z) =

H z G z H za f a f� �
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Summary of steps involved in the computation
of H(z)

•  Given Sx(�), form Sx(z) by setting ej� = z if
   Sx(z) is not given directly.

•  Factor Sx(z) as �2 Hca (z).

•  Assign all poles and zeros of Sx(z) inside unit
    circle to Hca (z).

•  Assign       outside

•  Remember to define Hca (z) so that

•  Form Sdx (z) and

•  Identify causal part of

•  Form H(z)

H zca
* */1c h

H zca
* */1c h

Hca �� �a f 1

S z H zdx caa f c h/ /* *1

S z H zdx caa f c h/ /* *1
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How to identify the causal and stable part of X(z)

(1)  Stability

      Recall:

•  a discrete system S is stable if and only if
    its impulse response is absolutely summable.

    i.e.,

•  H(z) = z [ h(n) ]         transfer function

    (when z = ej�    H(ej� ): frequency response)

•  Region of Convergence (ROC) of H(z) is
    defined by values of z for which:

h n
n
a f� � � �

System is stable (i.e., has a stable frequency
response) if its ROC includes the unit circle
(z so that |z| = 1).

�
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(2)  Causality:

       Assume a sequence x(n) = 0,  n < n1    (right-sided
sequence)

Property:  The ROC of X(z) is the center of a circle.

•  Proof

X z X n z n
n n

na f a f� �

�

�

�

�
1

1 0
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Conclusion:

A causal and stable discrete system must have
a system function H(z) = z [ h(n) ] with ROC
including:

•  the unit circle

•  entire z-plane outside the unit circle
    including z = �
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Evaluation of MMSE for causal IIR Wiener
filter

(1)  Using the time-domain

       too complicated; requires

(2)  Using the frequency domain

       Recall

�
�min

2
� �

�

�

�R h k R kd
k

dx0
0

a f a f a f

R k k
h k k
dx a f
a f

� ��

� ���

0
0

,
,

� �
�min

2
� E d h na f a f*
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� � �

� �

� �

� �

�

�

z
z

�

R z S z
j

S z z dz

R
j

S z z dz

S z z z

d d d

d d

k
d k

� �
�

� �

� �

�

�

�

�a f a f a f

a f a f

a f

1 1

1

1

1
2

0 1
2

min

2 Res ,

where zk is a pole of Sd� (z) z�1

contained inside the unit circle.

Note:  Why is           evaluated for poles inside
the unit circle?
Only because Sd� (z) is two-sided      

  converges in the region

we have to pick a path which is inside
the ROC

pick path = unit circle

� S zd� a f

�
�min

2

� �� �z 1 / .
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Solution of IIR non-causal Wiener Pb

for off-line applications only

Hnc (z) defined by:

h k R k n R n n

R h k R k

nc
k

x dx

d nc
k

dx

* *

*

���

��

���

��

�

�

� � �

� �

R
S
||

T
||

a f a f a f
a f a f a f�

�min

2 0

*

*

�
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Comments on IIR non-causal Wiener filter
results

The results are of theoretical interest for the following
reasons:

1.  The mean-square error �u obtained by using an
     unrealizable Wiener filter provides a lower bound
     on the mean-square error that is attainable by any
     realizable linear filter. The mean-square error, �u,
     is therefore referred to as the irreducible (or
     infinite delay) error.

2.  The use of an unrealizable Wiener filter has the
     same effect as a realizable Wiener filter obtained
     by allowing an infinite delay in the desired
     response. This result may be justified intuitively
     as follows. In the case of an unrealizable Wiener
     filter, the use of the entire past and future values
     of the input signal is permitted to produce an
     estimate of the desired response at the present
     time. We may build a realizable filter whose
     performance approaches that of the unrealizable
     Wiener filter by waiting until more of the future
     values of the input signal come in to produce an
     estimate of the desired response at a later time.
     In this way we can produce a mean-square error
     that is arbitrarily close to the irreducible error
     �u  by increasing the delay in the desired response.


